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1. INTRODUCTION

The establishment of connections between lattice statistical models and
percolation type problems''~15) has proved to be very fruitful. On the one
hand, it has enhanced the understanding of critical phenomena in terms of
geometrical concepts. On the other hand it allows the various techniques
developed in the theory of thermal critical phenomena to be used in the
study of percolation problems. Moreover, these geometric formulations of
thermal statistical models provide the basis of construction of cluster
dynamics which can drastically reduce the critical slowing down in Monte
Carlo simulations of these models (see(16>17) and references therein). For
example, in the case of the Potts ferromagnet,(18) Swendsen and Wang(16)

have introduced such a cluster dynamics based on the Kasteleyn and
Fortuin (KF)( 1 ) formalism. In this dynamics, all the spins belonging to the
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same cluster are flipped in a single step, contrary to single spin dynamics
where the spins are flipped one at a time. The above reduction of the
relaxation time stems from the fact that all the spins of such clusters are
correlated and can, thus, be treated as single spins, with no need of waiting
for single spin fluctuations to propagate over large correlated regions.

The mentioned percolation formulations of spin models have been
developed, for example, for the pure Potts model/ I i2 '5>8~10) dilute Potts
model/6'7' Potts model with multisite interactions,'3'4) chiral Potts model
types/11' q-state frustrated Potts model (12 , 13) mixed flow models and
mixed potential-difference models/14' XY (or more generally O(n))
models/15' Many of these formulations involve two main steps. Firstly, the
partition function and correlation functions of the considered spin model
are written in terms of percolation average types of quantities which
depend on the number 1 of spin states. Secondly, geometric properties of
the corresponding percolation problem (such as the mean number of
clusters, pair connectedness, etc.) are derived from the above percolation
averages in the /I -> 1 limit (or, A —> 0 when loops are not allowed). In some
complex cases, one does not succeed in accomplish the second step. In our
knowledge, the global two-step geometrical formulation for the discrete
TV-vector model has not been reported in the literature. This model, also
called the discrete TV-component cubic model, was firstly introduced by
Kim et a//19' in order to account for the unusually large specific heat
critical exponents which have been observed in phase transitions in
cubic rare earth compounds, like in HoSb. It has many other realizations
such as the order-disorder transition in atomic oxygen on tungsten/20' the
orientational ordering of diatomic molecules adsorbed on a triangular lat-
tice(21) (as observed in N2 adsorbed on graphite'22'), etc. In this model,
a pair interaction between spins S, and S, is given by the dipolar term
—/VJ(1'S, • S,, where the spin S,- at any given lattice site / is a //-component
unitary vector which can point into one of the 2N (positive or negative)
orthogonal coordinate directions. This model was, afterwards, extended'23'
in order to include also quadrupolar interactions of the form
— yVy'2)(S,-S,)2. This generalized model, which we will simply refer to,
henceforth, as the cubic model is a discrete version of the continuous
TV-component cubic model. Under the theoretical point of view, it has been
studied through many different methods (see, for example/24' and referen-
ces therein) and it contains several important statistical models, namely,
the Ising model (7V=1) , the Z(4) model ( A f = 2 ) , the self-avoiding walk
(TV—> 0)(25) and the Potts model. Furthermore, for a general value of 7V, the
cubic model is a particular case of the Z(X) model U = 2/V), which plays
an important role in both lattice gauge theory and statistical mechanics
(see, for example/26' and references therein).
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Herein, we develop a two-step geometrical formulation of the cubic
model through a procedure similar to the one introduced by Kasteleyn
and Fortuin(1) for the Potts model. Firstly we show that, for any value
of A, the partition function Z of the cubic model on any graph or lattice
G can be written as a percolation average (see Eq. (38)) in a new kind
of polychromatic bond percolation/27' In this problem there are three
types of present bonds, say blue (b), green (gr) and yellow (y) ones whose
occupancy probabilities (given by Eq. 37) are functions of the two dimen-
sionless couplings K = J(l}/kBT and LsJ(2}/kBT (where T is the tem-
perature) of the cubic model. But, contrary to the standard polychromatic
bond percolation, there are some forbidden bond configurations. If we
conveniently picture the green bonds as being negative and the remaining
ones (blue or yellow) as being positive, then we can express the restriction
on the configurations simply as stating that only the non-frustrated bond
configurations are allowed. Similarly, we have also proved that, for any
value of A, the functions Fl and F2 (defined in Eqs. (19) and (20)), which
are related to the respective dipolar and quadrupolar type correlation
functions 7\ (Eq. (21)) and T2 (Eq. (22)), can be expressed as percolation
averages (see Eqs. (44) and (43)) in this restricted polychromatic bond
percolation. Secondly, we show that, in the A = 2N -> 1 limit, the free
energy of the cubic model is related to the mean number n of clusters per
site (Eq. (45)), where a cluster is constituted by adjacent present bonds of
any color. Furthermore, in this limit, the correlation function T2 is related
to the global pair connectedness (i.e., the probability that the chosen pair
of sites are connected through bonds of any color) through Eq. (46),
while the dipolar type correlation function Tl is linked to the "blue pair
connectedness" (i.e., the probability that the chosen pair of sites are con-
nected through exclusively blue bonds) through Eq. (47). The interpreta-
tion of our results in terms of the above percolation can be done only
when the occupancy probabilities vary between 0 and 1 which require
that Q^K^L.

This paper is divided as follows. In Section 2, we define the model. In
Section 3, we express the partition function and the dipolar and quad-
rupolar type correlation functions of the cubic model as polychromatic
bond percolation averages containing two types of present bonds. In
Section 4, we transform these averages in other ones in such a way that
they lead, in the A = 2N -> 1 limit, to the above restricted polychromatic
bond percolation problem. We also show that our results recover the KF
ones in the appropriate limits corresponding to the Ising and Potts models.
The conclusions are given in Section 5. Finally, we give in the Appendix
the proof of a fundamental relation necessary to transform the formulation
of Section 3 into that of Section 4.
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2. THE MODEL

Let us consider the discrete TV-component cubic model on a graph G
with vertex set F, edge set E, number of vertices | V\ and number of edges
\E\. (We shall use throughout this paper the notation Ml to indicate the
number of elements of a set A). We associate with each vertex / of V a
TV-component vector S, which can point into one of the 2N directions
(positive and negative) of the Cartesian axes in a TV-dimensional space, in
other words:

830 de Magalhaes and Mariz

Then, one can describe the discrete cubic model by the following
dimensionless Hamiltonian<23)

where Ke = fSJ(el} and Le^J(^ are the respective dimensionless coupling
constants associated with the dipolar and quadrupolar interactions
between spins S, and S, located at the vertices / and / of the edge e. The
above sum is over all interacting pairs of spins on G.

Notice that for a spin S, which lies along the Cartesian axis x,
(1= 1, 2,..., N), its ath component 5,-a (a= 1, 2,..., N) is given by:

where ff,-= ±1 specifies the sense (x,^0) of the spin, and 6(1, a) is
the Kronecker function. In fact, one can regard (see ref. 23) the discrete
cubic model as that in which one associates to each vertex / of the graph
G two coupled variables: an Ising one (<r(.= +1) and a /V-state Potts one
(a,. = 1,2,..., TV).

The discrete cubic model contains several particular cases. It becomes
for TV = 1 and 2 identical, respectively, to the Ising model and the sym-
metric Ashkin-Teller model'28' (or, equivalently, the Z(4) model). It
reduces, for Ke = Le, to a 2N-state Potts model (with coupling constant
2NKe). Another special case occurs when Ke = Q, which corresponds to a
TV-state Potts model (with coupling constant NLe) and V\ independent
S=\/2 spins. Although these independent spins have been disregarded in
the literature as they lead to just a zero-energy shift, they are important
herein for checking if our results recover, as particular cases, the
appropriate ones. The studied model contains also the self-avoiding walk
with fugacity Ke in the TV-> 0 limit.<25) Finally, when Lel\Ke\ -> GO all spins



are induced to be parallel or anti-parallel (S , -S y= +1 V, y) and the cubic
model reduces to N decoupled Ising models, each one being along one of
the Cartesian axes and having coupling constant NKe.

3. POLYCHROMATIC PERCOLATION AVERAGE FORMS
FOR THE PARTITION AND CORRELATION FUNCTIONS

In this section we shall express the partition function and the dipolar
and quadrupolar type pair correlation functions of the discrete cubic model
as standard polychromatic bond percolation averages. For this, we shall
follow along the lines of Kasteleyn and Fortuin.'"

For convenience, we shall introduce an energy shift in Eq. (2) such
that the energy between parallel spins becomes zero. We shall, thus, adopt
the following form for the Hamiltonian:
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where the sum is over all the possible states {S,} of the V\ spins S, on the
vertices of the graph G, and the product is over all the |£| edges of G.

If we divide the product into two parts: one referring to a chosen edge
j (between the vertices m and n) and the other concerning the remaining
edges eeE\j, we can split the sum over {S,} into three ones according to
the 3 distinct values of the pair interaction energy between STO and Sn,
namely:

where

The sums in Eq, (6a) are over all states {S,-} which satisfy the respec-
tive conditions Sm • Sn = 1, Sm • Sn = — 1 and Sm • Sn = 0.

Now Jet us, respectively, call the broken and collapsed graphs Cj"* and
Gcc those graphs which are obtained from G by deleting the chosen edge

The partition function Z(G) can be written, thus, as:



j and contracting it (i.e., identifying the endpoints of j in G*6). They
correspond to the respective cases (A^- = 0, Ly- = 0) and (Kj-+ oo, L7-> oo).
Besides these two graphs, let us also consider the case (Kj = 0, Ly-»oo)
which we associate with the precollapsed graph Gf whose topology is
equal to that of G. Notice that the absence of the edge j in Gj* allows that
the spins Sm and Sn at its endpoints can be in any states, while the iden-
tification of the vertices m and n in Gf requires that Sm and Sn are in the
same state. The precollapsed edge in Gf leads to the restriction that
(S O T 'S K ) 2 =1 (see Eq. (4)), i.e., Sm= ±Sn. The respective partition func-
tions of the broken, collapsed and precollapsed graphs are, thus, given by.

Notice that Eq. (10) plays the same role as Eq. (8) of KF(1). Applying
recursively Eq. (10) until one arrives at graphs R which are null (i.e.,
graphs without edges constituted exclusively by isolated vertices) and/or
precollapsed (i.e., graphs whose edges are all precollapsed) we obtain, for
j?,(/VO (a. = b, r, 0), that:
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and

The combination of Eqs. (6)-(9) leads to the following break-collapse
equation for the partition function Z(G):

with

where Ecc, Ebc and Ebb are the sets of edges (contained in the edge set E
of G) which were respectively collapsed, precollapsed and broken in G in



order to give rise to the graph R. The above sum is over all the 3|£| graphs
R generated by the application of one of these 3 operations on each edge
of E. Notice that \ECC\ + \Ebc\ + \Ebb\ = |£|.

Let us define the graph R as the one obtained from R by deleting the
| V0\ isolated vertices such that R = R u F0, where F0 is the null graph with
| V0\ vertices. Thus, R is a precollapsed graph, and we shall denote by E$
and V% its edge set and vertex set respectively. By construction, the number
w(R) of clusters in R is given by:

Since the spins at the endpoints of a precollapsed edge must be
parallel or anti-parallel, it follows that there are (2N) 2 | F*<'~1 possible con-
figurations in each cluster Rt (;'=!, 2,..., w(R)) of R (where VR\ is the
number of vertices in Rt). Therefore the partition function of R is given by:

If we add to R all the edges of Ecc that had been collapsed, we
generate a partial3 graph G' of G. Let us colour these edges, say, with
blue, and the precollapsed edges, say, with red and call such graphs G'
"2-coloured" partial graphs of G (not to be confused with bichromatic
graphs since herein no constraint on the colouring is implied). Observe that
the number of clusters w(G') of G' is the same as that of R. But the number
of cycles of only red edges in G' can be different from that of R if there are
loops in R. In this case a loop of a precollapsed edge (be) of R will become
an usual red edge which belongs to a cycle with blue edges and eventually
with other red edges. The number of cycles c(R) of R is, thus, equal to the

3 A partial graph G' of G is a subgraph of G which has the same vertex set as that of G, i.e.,
V'=V and E' £ E.
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Now, let us recall the Euler relation which is valid for any graph G:

where c(G) is the cyclomatic number (i.e., number of independent cycles)
of G, and where the number w(G) of clusters in G includes the isolated
vertices.

Combining, thus, Eqs. (13), (14) and (15) one gets that:



number of cycles formed only by red edges in G' plus the number c*(G')
of independent cycles in G' which contain at least one red edge. Then,
using Eq. (16) we can rewrite Eq. (12) as:
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with

where the sum is over all the 3|£| 2-coloured partial graphs G' of G.
G' is the union of the two subgraphs G'b and G'r with respective edge
sets E'b and E'r which are disjoint (hence \E'b\ + \E'r\ = \ E ' \ ) . E'b (E'r) is con-
stituted of blue (red) edges, each edgey being associated with the variable
PbJ}(P(rJ)}- AH the isolated vertices will be attributed to G'b. The last product
in £"^ is over all the edges E\E' which belong to E but not to E'.

If O^K^L (which corresponds to a sub-region of the ferromagnetic
case where K^O and K+L^O) then O ^ p ^ ' ^ 1 (l=b, r, 0) and conse-
quently Eq. (17) can be interpreted as a polychromatic bond percolation
average, namely:

where < • • • ) G f p stands for an average over all the bond configurations
in a polychromatic bond percolation problem(27) with 2 types of present
bonds on the graph G, where the blue bonds (b) and the red bonds (r)
occur with independent respective probabilities p(

b
j) and p(

r
j) (which are

related to Kj and Lj through Eqs. ( l l a ) and ( l i b ) ) .
Now let us focus on the correlation functions. Let us define /\( 1, 2; G)

andr 2 ( l ,2 ;G) by:

and



where the sum is over all the possible configurations of the spins {S,-}
(/=1,2,..., |K|).

These functions are related to the respective dipolar and quadrupolar
(T2) type correlation functions between the spins S[ and S2 through:
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and

where the bar indicates a thermal average (such notation will be used
henceforth). The vertices 1 and 2 on which are located the spins S, and S2

of the considered correlation functions are called roots since they play a
special role on the graph G.

The correlation functions Tl and T2 are, in fact, equal129' to the com-
ponents of the equivalent vector transmissivity T(l, 2; G) = {T,(l, 2; G),
T2(\, 2; G)} between the roots 1 and 2 of G which have been used in many
real space renormalization group calculations (see ref. (29) and references
therein). One important property of Ja(l, 2; G) (a = 1, 2) is the fact that it
vanishes whenever there is no path connecting the roots 1 and 2.

Using a procedure similar to that for deriving Eq. (10), we obtain that:

Applying recursively Eq. (23) for a = 2 and using Eqs. (13) and (15)
one gets, similarly to the expression (17a), that:

where the superscript (G/) stands for global since both blue and red edges
can contribute for a path between 1 and 2. Eq. (24), for 0<K^L, can be
written as a polychromatic bond percolation average, namely:



4. THE A^1 LIMIT CASE: A NEW KIND OF
PERCOLATION PROBLEM

4.1. General Results

In the previous formulation it appeared a factor fg in the percolation
averages which prevents us to accomplish the second step mentioned in
Section 1, i.e., we failed to relate the thermal properties of the cubic model
with the geometric ones of the polychromatic bond percolation problem
when the number of states 1 = 2N tends to 1. In this section we shall pre-
sent a two-step geometrical formulation in which this is possible provided
that certain bond configurations are avoided, similar to what happens in
the bond frustrated percolation (BFP) problem."2'13)
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Concerning the other function /~\(1, 2; G), due to its special property
that TI = 0 for a precollapsed graph,<24) one has to apply Eq. (23) iteratively
until one arrives at graphs which contain isolated vertices, only one root,
and edges which are all precollapsed ones, except the eventual loops of
collapsed edges. This unique root arises from the collapse of the two roots,
which will give rise to a factor yn(G'b] after adding the previously collapsed
(blue) edges. Similar to Eq. (17a), one gets that:

which, for Q<K^L, leads to

where the superscript b stands for blue since there must be, at least, one
path of solely blue bonds connecting 1 and 2 in order that y\b2(G'b) = 1
(otherwise y[2

)(G'b) = 0).
It is worth stressing that alternative polychromatic bond percolation

average forms for the denominator and numerators of 7^(1,2, G) and
T2(l,2,G) have been obtained by Arrowsmith and Essam.(141 Their
averages are expressed in variables different from our p(

b
j) and p(

r
j) ones, the

quantities to be averaged have no simple formulae and no relations are
given between the thermal properties and the geometrical ones in the 1 -> 1
limit.



The central point for obtaining this new formulation consists in using
the fact that in one precollapsed edge ebc (characterized by Ke = Q and
Le -» oo), which links the vertices i and j, the spins S, and S,- must be
parallel or anti-parallel. Therefore one can split its partition function Z(ebc)
into two parts: one corresponding to S, = Sy (becoming a collapsed edge)
and the other to the case where S,-= — Sy- (generating what we shall call an
"anti-collapsed" edge eac), namely:

822/90/3-4-21
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Therefore one can generate 2|£*' graphs from a precollapsed graph R
(defined in the previous section) by attributing to each of its \ER\
precollapsed (red) edges one of the two possibilities: either an yellow edge
(corresponding to the condition St = Sj of a collapsed edge) or a green edge
(corresponding to the condition S,= —Sj of an anti-collapsed edge). Then,
one can show (see the proof in the Appendix) that from these 2|£*' graphs
on\yf(R) = 2 |£«I~C(J?) graphs do not contain any cycle with an odd number
of green edges. Let us denote by j^each of such graphs (the subscript nf
stands for non-frustrated for reasons which will become clear later on).
Notice that the other graphs (i.e., the "frustrated" ones) do not contribute
for Z(R), and hence:

If the state of S, located on one of the vertices of a cluster of a given Rnf

is fixed, then, the states of the spins on the other vertices of this cluster
become automatically determined without any incompatibility. Therefore
its partition function is given by

Observe that in the generation of Rnf from R there is no alteration in
the number of clusters, i.e.

Combining this equation with the previous results, one obtains that

Adding thus the | K0| isolated vertices to R in order to form R, and
using Eq. (13), one finally arrives to Eq. (16). If one attributes a zero
weight to the frustrated graphs Rf (i.e., Z(Rf) = 0), then this shows that the



replacement of each graph R by the 2|£;il new graphs (where each of its red
edges have been substituted, say, by either an yellow or green edge) does
not alter the original partition function Z(R) of the graph R. Now, let us
add all the edges e e Ecc of G which had been collapsed during the process
of generating R, and colour them with blue. Notice that these edges are the
same collapsed ones which appeared in the previous section, and hence
they are also coloured with blue. If one considers all the 3|fi| original bond
configurations (where each edge can be blue, red or absent) and then
replace each red edge by either, say, a green or yellow one, it will be
generated, at the end, 4|£| bond configurations where each edge can be
blue, green, yellow or absent. This can be easily seen if one considers all the
combinations CJB| of |£| with I (1=0, 1,..., |£|) red bonds giving 3^';l =
X/fJo C|£| 2 | A | ~ ' configurations and, after substitution of the red edges by
the green and yellow bonds, one obtains ^f=o C\E' 2|£'|-/2' = 2|£| £' = „ C\El =
4|£| configurations (where / represents the sum of the numbers of green
and yellow bonds). From these 4'A| possibilities (which constitute all the
"3-coloured" partial graphs 6" of G), only those in which each cycle has an
even number of green edges contribute to the partition function Z ( G ) .

Taking into account all the above considerations, one can rewrite
Eq. (12 ) as:

with

where the star means that the sum in the "3-coloured" partial graphs G" of
G must be taken only over those configurations in which each cycle has an
even number of green bonds. G' is the union of the three subgraphs G'b, G'gr

and G'y with respective disjoint edge sets E'h (with blue edges), E'gr (with
green edges) and E'y (with yellow edges). Observe that \E'b\ + \E'gr\ +
\E'y\ =|£"|, and that the last product is over the absent edges E'$ (they
belong to E but not to E' = E'b\jE'sr<u E'y). Notice that with each type a
of edge 7 (a = blue (b), green (gr) or yellow ( > > ) ) is associated a weight/?^'1,
but an absent edge j is associated with a weight p(0J) = 1 — (p(bj) + p(rj))
which is different from the complement of the others (i.e., /?{/' ¥= 1 — (p(bj] +
p(yj} + pl/r})). This inconvenience can be overcome by dividing and multiply-
ing Eq. (33a) by the factor Hjl'i (P(bj) + P(J} + P(J} + P o } ) and using that
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One can, thus, rewrite Eq. (33a) as:
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with

which are given in terms of K and L as (see definitions ( 1 1 ) ) :

and

When Q^K^L then O^a^'sS 1 (l = b, gr, y or 0) and we can write
Eq. (35) as the following special percolation (SP) type average:

with

< • • • > a, SP stands for an average over all the bond configurations in a new
kind of polychromatic bond percolation problem in which there are 3 types
of present edges {j} (say, the blue (b), the yellow (y), and the green (gr)
ones) on the graph G with the constraint that each cycle of a configuration
contains only an even number of green edges. Each edge j (j= 1, 2,..., \ E \ )
has probabilities a1/', a '̂1, <x.(£ = «.(j) and 1 -(a</> + a^ + a^') (defined in



Eq. (37)) of being blue, yellow, green or absent, respectively. Notice that
if we associate with a green edgey a value Sj,= — 1 (playing the role similar
to that of an antiferromagnetic AF bond) and if we associate the value
Sj.~ +1 (playing the role similar to that of a ferromagnet F bond) with a
blue or yellow edge j, then the only allowed configurations are those which
are not frustrated. In other words, the frustrated cycles lf, characterized by

840 de Magalhfies and Mariz

are forbidden in the above percolation problem and, within the above con-
vention, the symbol star can be interpreted as a sum over configurations of
positive and negative bonds which do not contain any frustrated cycle.
A similar fact occurs in the BFP model<12'13) which is related to spin
glasses and glasses. But in the BFP, the lattice (or any graph G) is first
prepared by randomly assigning to each edge j the variable £,- = ±1 with
equal probabilities and, only after fixing the distribution of {ey}, the
bonds are randomly introduced onto the edges (regardless of the sign of £,-)
with the constraint of not giving rise to any frustrated cycle. This proce-
dure generates, at each time the bonds are thrown without frustration, a
"2-coloured" partial graph G' of G whose edges are positive, negative (with
equiprobability) or absent and such that each cycle has an even number of
negative bonds. Therefore, the set tj>(G, {sj}) of all possible bond configura-
tions G' £ G with no frustration which appear in the BFP problem contains
only configurations compatible with a given distribution of { EJ-}, constituting
thus only a subset of the set (j>(G) of all non-frustrated configurations of G.
Furthermore, the union of the sets <t>(G, {e,-}) over all the possible distribu-
tions {sj} is different from ^(G) since there are bond configurations
compatible with distinct distributions {sj}. This is the reason why our per-
colation problem does not reduce, for a^" = 0 (where the positive and
negative bonds become equiprobable), to the BFP model. In a similar way,
our result Eq. (38) does not recover, for a(bj) = 0, that of Coniglio(13) for the
partition function of the frustrated g-state Potts model (with q = 2N).

Following a procedure similar to the one used for deducing Eq. (38),
we can derive from Eq. (23) the following equations for /"„(!, 2; G)
(a =1,2):
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and

which can be rewritten, for Q^K^L, as the respective special percolation
averages:

and

Following along the lines of Wu,(5) we can now accomplish the men-
tioned second step of our formulation, establishing the relations in the
A - > 1 limit, between Z(G) (Eq. (38)), T2(1,2;G) (Eq. (43)), r , ( l ,2 ;G)
(Eq. (44)) and respective characteristic quantities of the above special per-
colation, namely:

(i) the mean number of clusters per site n(G] (where a cluster con-
tains adjacent present bonds of any color)

where F(G) is proportional to the free energy per site given by

(ii) the global pair connectedness C(if'(G), i.e., the probability that
the sites 1 and 2 are connected through any types of edges

where r2(l, 2; G) is proportional to the quadrupolar type pair correlation
function given by

with T2(l, 2; G) being defined by Eq. (22).



(iii) the "blue pair connectedness" C$(G), i.e., the probability that
the sites 1 and 2 are connected through exclusively blue bonds:

with 7\(1, 2; G) being defined by Eq. (21).

4.2. Particular Cases

Now let us show that our general expressions Eqs. (38), (43) and (44)
reproduce correctly the expected results in different particular cases of the
cubic model.

(i) Kj = 0. Our Hamiltonian (Eq. (4)) reduces, for Kj = Q, to that
of a jV-state Potts model (with coupling constant NL}) together with | V\
independent 5=1/2 spins. In this case, the probabilities a(/' (Eqs. (37))
become:
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where F\(\, 2; G) is proportional to the dipolar type pair correlation func-
tion, namely:

and

and the factor A({Kj}, {Lj}) (Eq. (39)) becomes

The vanishment of of/1 does not imply that Z(G) = 0 since Eq. (38)
was derived by the recursive application of Eq. (10) assuming that each of
its three terms is non null. In the case Ke = 0, the collapsed graphs do not
contribute to Z(G) since p(

b
j) vanishes. In this situation, the iteration of



Eq. (10) leads to a modification of Eq. (12), namely, the absence of the
product of p^} over the collapsed edges Ecc. Consequently, the product of
a^' over the blue edges contained in the definition of the special percola-
tion type average (see Eq. (35)) disappears and all the subgraphs G'b are
null ones. Taking this into account and combining Eqs. (48), (49) and (38),
the partition function becomes:
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with

Notice that p^ is equal to the probability of a red edge />J/' when
Kj = 0 (see Eq. ( l i b ) ) . If we invert the reasoning which led us to derive
Eq. (38) from Eq. (17), i.e., if we think that a green or yellow edge was
originated by a red one and remember that from the 2|£'' possible graphs
with \E'\ red edges (notice that \E'\ = \E'r\ since |£"6|=0) only 2|£'|-c(G')
graphs are not frustrated, then we get that:

which is equal to Eq. (17a) specialized to the case where there are no blue
edges (since the first product of Eq. (17a) would be absent when p^ = 0 for
the reasons explained above).

Using the Euler relation (Eq. (15)) and incorporating all the isolated
vertices (which belong to G'b) to G; such that G' = G'r (and, hence, | V'\ = \ V\)
we, finally, arrive at

or, equivalently,

with

where < • • • ) ( ? , P(n stands for the usual bond percolation average on a
graph G in which the occupancy probability of an edge j is p(J) defined in



The factor 2in in Eq. (55a) comes from the \V\ independent 5=1/2
spins and we get, again, the recovering of the expected results for Kj = 0.

Concerning 7\(1, 2; G) (Eq. (44)), it vanishes when A^ = 0 due to the
absence of blue edges (since in that case y^CGJ,) = 0). This is in agreement
with the fact that 7\(1,2;G) becomes null whenever /^. = 0,(24) which
renders r,(l,2;G) = 0 (cf Eq. (21)).

(ii) Kj = Lj. When Kj — Lj the studied model reduces to a 2N-state
Potts model with coupling constant 2NKj. In this situation a'/* (Eqs. (37))
become
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Eq. (50b). Z^G) is the result obtained by KF(1) for the ^-state (q = N)
Potts model described by the dimensionless Hamiltonian

where a/ is the Potts variable associated with each vertex /' of G and
S(ffi, ffj) is the Kronecker function.

Therefore, our result Eq. (53) corresponds to the partition function of
the Af-state Potts model (with coupling constant NLe) and | V\ independent
S=l/2 spins (the latter has 2|K| configurations with zero energy leading,
thus, to the factor 2|F| in Eq. (53a)), recovering the expected results for
Kj = 0.

Similarly, we obtain that T2(l, 2; G) (Eq. (43)) reduces, for ^ = 0, to:

with

where, again, /^(l, 2; G) is the result obtained by KF(1) for the TV-state
Potts model in what concerns the correlation function 7"12(G), i.e.

and



The vanishment of ot^ and a*/5 implies that p(/} = 0 (cf Eq. (36)) and,
therefore, the precollapsed edges do not contribute to Z(G). In this case,
Eq. (10) reduces to Eq. (8) of KF(1\ and there is not need of the second
formulation (Section 4). It is straightforward to show that our results
reduce, then, to:
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while A({Kj},{Lj})(Eq.(39)) reduces to

and

which recover the expected results'" for the A-state Potts model with
coupling constant 2NKj. Combining Eqs. (21), (22), (34) and (60) we
obtain that 7^(1, 2; G) = T2(l, 2; G) as it should be.(24)

(iii) Lj/\Kj\ -> oo. The case L,/(Kj\ -> oo corresponds to Ndecoupled
Ising models, each of which has coupling constant NKj. In this situation
Eqs. (37) and (39) reduce to

and

The vanishment of af/' and, consequently, ofp^ (cf Eq. (36)) indicates
that there are no absent edges. Therefore the broken edges do not con-
tribute, in this case, to the partition function, and the iteration of Eq. (10)



for pj/1 = 0 would lead, at the end, to an SP average without the product
in OL(

O
J\ Equation (38) becomes, after using Eqs. ( 6 1 ) and (62):
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where p^1 is the occupancy probability of a blue edge j defined in Eq.
( l l a ) . Similarly to the particular case (i), we can replace the green and
yellow edges by red ones, transforming the above star sum into an usual
one, namely:

Due to the lack of absent edges it follows that:

and

and using the Euler relation Eq. (15) , we can rewrite Eq. (64) as:

Constructing graphs G" by deleting the red edges of G', it follows that
all the edges of the edge set E" of G" are blue and that:

and

The combination of Eqs. (15) , (66) and (67) leads, finally, to:



where Z^,(G) is the KFU1 result for the Ising model with coupling con-
stant NKj. Our result Eq. (68) corresponds, thus, to N decoupled Ising
models, recovering the appropriate result.

Concerning the function T2( 1, 2; G) (Eq. (43)) since, in the considered
situation, there are no absent edges, then the following equality holds:
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which would lead to a result similar to Eq. (68), namely

and, consequently (cf Eq. (22)),

Although, in this case, r2(l, 2; G) does not provide any useful infor-
mation about the correlation function, this does not occur with r,( 1, 2; G)
(Eq. (44)). Following the previous procedure, we would arrive at an equa-
tion similar to Eq. (66) except by the additional factor y(^(G'b) which
becomes, after the deletion of the red edges, identical to yl2(G"). Hence we
get that:

which, combined with Eqs. (21) and (68), leads to the expected result,
namely:

where r^2(G) is the correlation function"> of the Ising model with coupling
constant NKj.

(iv) N= 1 (Ising Model). In the Af= 1 case, which corresponds to
the Ising Model, it has been shown'24' that the vector transmissivity has
only one component (te = fe( 1) = tanh Ke) and that



and

5. CONCLUSIONS

We prove, herein, that the discrete TV-component cubic model is
related, in the /I = 2N -> 1 limit, to a new kind of percolation problem in
the same way as standard bond percolation is connected to the q -» 1 limit
of the Potts model. Although this relation occurs only for the ferromagnetic
case of the cubic model, this new percolation can be regarded as one in
which there are negative bonds and two types of positive bonds subjected
to the constraint that the only allowed configurations are those without
frustration. Although this restriction appears also in the bond-frustrated
percolation, which was introduced'12* in the context of spin glasses and
glasses, our percolation problem is essentially different from it (where a
further restriction of the quenched type on the allowed configurations is
imposed).

We hope that, as the Kasteleyn and Fortuin(1) percolation formulation
was successfully used by Swendsen and Wang(16> in the construction of a
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Combining the above equations with Eq. (10) we obtain the following
break-collapse equation for Z(G) when N=l:

with

which coincides with Eq. (8) of ref. 1. Since there are no precollapsed edges
and, therefore, no green and yellow edges, we do not need the second for-
mulation. Equations (18) and (27) would reduce, similarly to the particular
case (ii), to:

and

which recover the KF results'" for the Ising model with coupling constant
Kj, as it should be.



cluster Monte Carlo algorithm for the Potts ferromagnet, our results are
used for the development of a cluster dynamics which would considerably
reduce the critical slowing down in Monte Carlo simulations of the cubic
model. Work along this line is in progress.

APPENDIX. PROOF OF THE EQUALITY f ( f i } = 2^-c("]

In this appendix we prove that, from the 2|£*1 graphs generated from
a connected precollapsed graph R by attributing to each of its \EK{ edges
either an yellow or a green color, only f ( R ) graphs do not contain any
cycle with an odd number of green edges.

Let us consider a fundamental cycle basis constituted by the independ-
ent cycle vectors n(1), n<2),..., (i<c) associated with some spanning tree<30) of
the graph R (whose cyclomatic number c(R) we shall simply denote by c).
H0) is an \Eg\-dimensional vector whose components ^ (<x= 1, 2,..., \Eg\)
are 1 or 0 depending if the edge ex belongs or not, respectively, to the cycle
H(l) (/= 1, 2,..., c). Let us denote by kt the number of edges that belong
exclusively to the cycle n(l) (notice that k,-9^0 V; for any basis associated
with a spanning tree). Since every edge of R must belong to one of the c
independent cycles, it follows that
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with

where / ̂  0 is the number of edges of R which belong to two or more cycles
//w. We shall denote these edges by a,, a2,..., a,.

Let us consider a fixed color configuration 6 for the edges a,, az,..., a,.
This fixed configuration, together with the fact that each cycle fi(f> must
have an even number of green edges, lead to the following number Ng of
possible configurations:

as, once we choose the configurations of any (kt— 1) edges of a cycle /z(l),
the color of the remaining edge of this cycle is automatically determined by
the mentioned restriction.



Since the constraint of having an even number of green edges in each
cycle was already taken into account in Eq. (A.2), there are 2' possible con-
figurations 0's for the edges a,, a2,..., a,. Therefore the total number f ( R )
of graphs which do not contain any cycle with an odd number of green
edges is given by
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